TOWARDS A COMPETITIVE $|V_{us}|$
DETERMINATION FROM STRANGE HADRONIC $	au$ DECAY DATA AND LATTICE HVPs

Kim Maltman, York University, Toronto, Canada

with R.J. Hudspith, R. Lewis (York), and P. Boyle, T. Izubuchi, A. Jüttner, C. Lehner, H. Ohki, A. Portelli, M. Spraggs (RBC/UKQCD)

QCD Down Under III

Cairns, July 2017
OUTLINE

• Background/motivation

 o *The long-standing FB FESR τV_{us} puzzle*

 o *Systematic issues in the conventional implementation, a new implementation (and solution) + current practical limitations to this new approach*

• *A new lattice-inclusive $us V+A \tau$ data strategy: dispersive formulation, results, and future prospects*
• The puzzle: τ vs. non-τ determinations

| $|V_{us}|$ | Source |
|-------------------|---|
| 0.2258(9)(?) | 3-family unitarity, HT14 $|V_{ud}|$ |
| 0.2231(4)$_{exp}(7)_{latt}$ | K_ℓ^3, 2+1+1 lattice $f_+(0)$ |
| 0.2253(4)$_{exp}(6)_{latt}$ | $\Gamma[K\mu_2]/\Gamma[\pi\mu_2]$, lattice f_K/f_π |
| 0.2186(18)$_{exp}(10?)_{th}$ | τ FB FESRs (HFAG17) |

• τ result is from restrictive “conventional implementation” of more general inclusive FB FESR framework
• Interesting (if true) given other hints of lepton universality breakdown [see e.g. Nature 546 (2017) 227]

 ○ Combined Belle, BaBar, LHCb results for

 \[R[D^{(*)}] \equiv B[\bar{B}^0 \to D^{(*)+}\tau^-\nu_{\tau}] / B[\bar{B}^0 \to D^{(*)+}\mu^-\nu_{\mu}] \]

 (2nd, 3rd generation quarks; 3rd vs 2nd generation leptons) combined \(\sim 3.9\sigma \) above SM expectations

 ○ LHCb results for

 \[R_{K^{(*)}} \equiv B[B^+ \to K^{(*)+}\mu^+\mu^-] / B[B^+ \to K^{(*)+}e^+e^-] \]

 (2nd, 3rd generation quarks; 2nd vs 1st generation leptons) \(\sim 2.5\sigma \) below SM expectations

• C.f. non-strange, strange \(\tau \) decays: 3rd generation lepton; 1st, 2nd generation quarks
BASICS: HADRONIC τ DECAYS IN THE SM

- $R_{ij;V/A} \equiv \Gamma[\tau \rightarrow \nu_\tau \text{hadrons}_{ij;V/A}(\gamma)]/\Gamma[\tau^- \rightarrow \nu_\tau e^-\bar{\nu}_e(\gamma)]$

- With $y_\tau \equiv s/m_\tau^2$, flavor ij decays in SM [Tsai PRD4 (1971) 2821]

$$\frac{dR_{ij;V+A}}{ds} = \frac{12\pi^2 |V_{ij}|^2 S_{EW}}{m_\tau^2} \left[1 - y_\tau\right]^2 \tilde{\rho}_{ij;V+A}(s)$$

$$\tilde{\rho}_{ij;V+A}(s) \equiv \left[(1 + 2y_\tau) \rho_{ij;V+A}^{(J=1)}(s) + \rho_{ij;V+A}^{(J=0)}(s)\right]$$

kinematic weight: $w_{\tau}(y) = (1 - y)^2(1 + 2y)$
THE INCLUSIVE FB $\tau |V_{us}|$ DETERMINATION

- **FESRs for $\Pi = \Pi_{ud-us;V+A}(Q^2)$, $\rho = \rho_{ud-us;V+A}(s)$**:
 \[
 \int_{s_{th}}^{s_0} ds \, w(s) \rho(s) = \frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(s) \Pi(s) \]

- **Experiment**:
 \[|V_{ij}|^2 \rho_{ij;V/A}^{(0+1)}(s)\text{ from } dR_{ij;V/A}/ds\]

- **$R_{ij;V/A}^w(s_0)$**: re-weighted $R_{ij;V/A}$ analogue
 \[R_{ij;V/A}^w(s_0) \sim \int_{th}^{s_0} ds \frac{dR_{ij;V/A}}{ds} \frac{w(s/s_0)}{w_\tau(s/m_\tau^2)}\]

- **FB differences $\delta R^w(s_0)$** \[\equiv \frac{R_{ud;V+A}^w(s_0)}{|V_{ud}|^2} - \frac{R_{us;V+A}^w(s_0)}{|V_{us}|^2}\]
• FESR, OPE for $\delta R^w(s_0)$, input $|V_{ud}| \Rightarrow$

$$|V_{us}| = \sqrt{\frac{R^w_{us;V+A}(s_0)}{R^w_{ud;V+A}(s_0)} - \left[\delta R^w(s_0)\right]^{OPE}}$$

Self-consistency: $|V_{us}|$ independent of s_0, w

• **The conventional implementation** [Gamiz et al. JHEP03(2003)060]

 ○ $s_0 = m_\tau^2$, $w = w_\tau$ only [spectral integrals from inclusive ud, us BF, but no self-consistency tests]

 ○ w_τ degree 3 \Rightarrow OPE to $D = 8$

 ○ Strong assumptions re $D = 6$ (VSA), $D = 8$ (~ 0)
- $|V_{us}|$ results from extended variable-s_0, -w FB FESR analyses with same $D = 6, 8$ assumptions show [see KM, JZ et al arXiv:1702.01767]

- strong unphysical s_0 dependence

- strong unphysical w dependence even at $s_0 = m_T^2$

- apparent convergence toward common value for different w beyond $s_0 = m_T^2$

- Observed unphysical behavior strongly suggests breakdown of $D = 6, 8$ OPE assumptions
AN ALTERNATE FB FESR IMPLEMENTATION

- Theory side

 - No $D > 4$ assumptions: effective condensates $C_{D>4}$ from fits to data *(N.B. requires variable s_0)*

 - 3-loop-truncated FOPT $D = 2$, standard $D = 2 + 4$ error estimates [from comparison to lattice data]

 - C_{2N+2} ($D = 2N + 2$ condensate), $|V_{us}|$ both from $w_N(y) = 1 - \frac{y}{N-1} + \frac{y^N}{N-1}$ FESR ($y = s/s_0$)

 - $|V_{us}|$ from different w_N as self-consistency check
• Experimental input (also for new lattice approach)

 ○ Updated/corrected 2013 ALEPH for ud V+A

 ○ us V+A from sum over exclusive modes

 * K from $K_{\mu 2}$ or $B[\tau \rightarrow K\nu\tau]$

 * $K\pi$, $K^-\pi^+\pi^-$, $\bar{K}^0\pi^-\pi^0$: BaBar, Belle unit-normalized distributions, BFs

 [Note: HFAG $B[K^-\pi^0] + B[\bar{K}^0\pi^-] = 0.01273(21)$ c.f. 0.01327(48) with additional dispersive $K\pi$ ff constraints [ACL13, JHEP 1310 (2013) 070]]

 * Remaining ("residual modes") from 1999 ALEPH (note: \sim 25% errors, some MC)
NEW FB FESR RESULTS

- With fitted $D > 4$ condensates
 - unphysical s_0, $w(y)$-dependence problems resolved
 - $|V_{us}|$ increased by ~ 0.0020 ($0.2186(21) \rightarrow 0.2209(23)$)
 - Non-trivial $K\pi$ normalization uncertainty: with alternate ACLP choice, $0.2209(23) \rightarrow 0.2233(28)$ (c.f. $0.2207(27)$ from conventional implementation)

- Very favorable (~ 0.0005) theory error situation

- us spectral integral uncertainty dominates current error
• *Theory error* ⇒ *competitive with* $K_{\ell 3}$, $\Gamma[K_{\mu 2}]/\Gamma[\pi_{\mu 2}]$
 with sufficient u_s experimental error improvement

• u_s experimental uncertainties currently BF dominated

• BF's more easily improved experimentally than exclusive mode dR/ds distribution contributions

• Near-term low-multiplicity mode progress likely [combined BaBar, Belle (+Belle II) effort on spectral functions from existing B-factory data under way]

• **However** sub-0.5% $|V_{us}|$ needs sub-% $R_{us;V+A}$ error
- Exclusive us mode w_N spectral integral contributions

Relative exclusive mode $R^w_{us:V+A}$ contributions

<table>
<thead>
<tr>
<th>W_t</th>
<th>s_0 [GeV2]</th>
<th>K</th>
<th>$K\pi$</th>
<th>$K\pi\pi$ (B-factory)</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>2.15</td>
<td>0.496</td>
<td>0.426</td>
<td>0.062</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>3.15</td>
<td>0.360</td>
<td>0.414</td>
<td>0.162</td>
<td>0.065</td>
</tr>
<tr>
<td>w_3</td>
<td>2.15</td>
<td>0.461</td>
<td>0.446</td>
<td>0.073</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>3.15</td>
<td>0.331</td>
<td>0.415</td>
<td>0.182</td>
<td>0.074</td>
</tr>
<tr>
<td>w_4</td>
<td>2.15</td>
<td>0.441</td>
<td>0.456</td>
<td>0.082</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>3.15</td>
<td>0.314</td>
<td>0.411</td>
<td>0.194</td>
<td>0.081</td>
</tr>
</tbody>
</table>

- "Other": 1999 ALEPH data/MC, \sim 25% error

\Rightarrow "sufficient improvement" includes experimentally (much) more challenging higher-multiplicity modes
A LATTICE $τ$-BASED ALTERNATIVE

- Basic idea: generalized dispersion relations for products of combination $\tilde{\Pi}$ of $J = 0, 1$ us V+A polarizations with weights having poles at Euclidean Q^2

 - $\tilde{\Pi}(Q^2)$: polarization sum with spectral function $\tilde{\rho}(s)$ (experimental $dR_{us;V+A}/ds$)

 - Theory: Lattice us 2-point function data (no OPE)

 - Weights tunable, allow suppression of larger-error, higher-multiplicity us spectral contributions
More on the lattice-inclusive $us \tau$ approach

- $|V_{us}|^2 \tilde{\rho}_{us;V+A}(s)$ from experimental $dR_{us;V+A}/ds$

$$\tilde{\rho}_{us;V+A}(s) \equiv \left(1 + 2 \frac{s}{m^2_\tau} \right) \rho_{us;V+A}^{(J=1)}(s) + \rho_{us;V+A}^{(J=0)}(s)$$

(no continuum $us \ J = 0$ subtraction required)

- Associated (kinematic-singularity-free) polarization

$$\tilde{\Pi}_{us;V+A}(Q^2) \equiv \left(1 - 2 \frac{Q^2}{m^2_\tau} \right) \Pi_{us;V+A}^{(J=1)}(Q^2) + \Pi_{us;V+A}^{(J=0)}(Q^2)$$

- $\tilde{\rho}_{us;V+A}(s) \sim s$ as $s \to \infty$
• For weights \(w_N(s) \equiv \frac{1}{\prod_{k=1}^{N}(s+Q_k^2)} \), \(N \geq 3 \), obtain convergent, unsubtracted 'dispersion relation'

\[
\int_{th}^{\infty} ds \, w_N(s) \tilde{\rho}_{us;V+A}(s) = \sum_{k=1}^{N} \frac{\tilde{\Pi}_{us;V+A}(Q_k^2)}{\Pi_{j \neq k}(Q_j^2 - Q_k^2)} \equiv \tilde{F}_w N
\]

○ Lattice data for \(\tilde{\Pi}_{us;V+A}(Q_k^2) \) on RHS

○ LHS from experimental \(dR_{us;V+A}/ds \), up to \(|V_{us}|^2 \)

○ \(w_N(s) \): rapid fall-off if all \(Q_k^2 < 1 \text{ GeV}^2 \)

\[\Rightarrow K, K\pi \text{ dominate LHS, near-endpoint multi-particle, } s > m_T^2 \text{ contributions strongly suppressed} \]

○ Optimization: increasing \(\{Q_k^2\} \) decreases RHS lattice error, increases LHS experimental error
• A few details:

 ○ Near-physical-point RBC/UKQCD \(n_f = 2 + 1 \) DWF ensembles

 * \(48^3 \times 96, \ 1/a = 1.73 \text{ GeV}, \ m_\pi = 0.139 \text{ GeV}, \ m_K = 0.499 \text{ GeV} \)

 * \(64^3 \times 128, \ 1/a = 2.36 \text{ GeV}, \ m_\pi = 0.139 \text{ GeV}, \ m_K = 0.508 \text{ GeV} \)

 * (Small) retuning to physical valence masses [PQ]

 ○ Time-momentum representation for polarizations in \(\tilde{F}_{w_N} \) sum (back-up slides)
\begin{itemize}
 \item Weighted spectral integrals (include \(|V_{us}|^2\) factor)

 \[
 \tilde{R}_{wN} \equiv \int_0^{m_T^2} \frac{m_T^2}{12\pi^2 S_{SW}(1 - y_T)^2} \frac{dR_{us;V + A(s)}}{ds} w_N(s)ds
 \]

 \[
 \tilde{F}^{pQCD}_{wN} \equiv \int_{m_T^2}^{\infty} [\tilde{\rho}_{us}(s)]^{pQCD} w_N(s)ds
 \]

 \[
 |V_{us}| = \sqrt{\tilde{R}_{us;wN} / [\tilde{F}_{wN} - \tilde{F}^{pQCD}_{wN}]}
 \]

 \item Expect continuum spectral \(A, J = 0\) channel contributions negligible for \(w_N\) employed (confirmed by lattice data), hence exclusive \(A, J = 0\) analysis also possible (using only \(K\) spectral contribution)

 \item \(w_N\) below: uniform pole spacing \(\Delta\), centroid \(C\)
\end{itemize}
Reweighting of exclusive mode distributions

Left panel: un-re-weighted experimental data; right panel: $N = 4$, $C = 0.5 \text{ GeV}^2$ re-weighted version

\[N = 4, \ C = 0.5 \text{ GeV}^2 \text{ reweighting} \]
High-s spectral suppression, $N = 4$ example

Left panel: relative exclusive mode spectral contributions
Right panel: relative lattice residue contributions
Lattice error breakdown vs. C, $N = 4$
Exclusive A, $J = 0$ channel determination
Inclusive determinations

Left panel: HFAG $K\pi$ normalization; right panel: alternate, dispersively constrained ACLP $K\pi$ normalization
| V_{us} error budget [%], HFAG $K \pi$ normalization |

<table>
<thead>
<tr>
<th></th>
<th>[N, C [GeV2]]</th>
<th>[3, 0.3]</th>
<th>[3, 1]</th>
<th>[4, 0.7]</th>
<th>[5, 0.9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>theory</td>
<td>f_K</td>
<td>0.37</td>
<td>0.20</td>
<td>0.34</td>
<td>0.36</td>
</tr>
<tr>
<td>others, stat.</td>
<td></td>
<td>0.41</td>
<td>0.19</td>
<td>0.34</td>
<td>0.41</td>
</tr>
<tr>
<td>discretization</td>
<td></td>
<td>0.10</td>
<td>0.80</td>
<td>0.25</td>
<td>0.27</td>
</tr>
<tr>
<td>scale setting</td>
<td></td>
<td>0.09</td>
<td>0.08</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>IB</td>
<td></td>
<td>0.10</td>
<td>0.21</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>FV</td>
<td></td>
<td>0.10</td>
<td>0.04</td>
<td>0.13</td>
<td>0.18</td>
</tr>
<tr>
<td>pQCD</td>
<td></td>
<td>0.05</td>
<td>0.26</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>0.59</td>
<td>0.91</td>
<td>0.58</td>
<td>0.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>experiment</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{K}</td>
<td></td>
<td>0.48</td>
<td>0.27</td>
<td>0.44</td>
<td>0.47</td>
</tr>
<tr>
<td>$K\pi$</td>
<td></td>
<td>0.20</td>
<td>0.32</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>$K^-\pi^+\pi^-$</td>
<td></td>
<td>0.06</td>
<td>0.16</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>$\bar{K}^0\pi^-\pi^0$</td>
<td></td>
<td>0.03</td>
<td>0.09</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>residual</td>
<td></td>
<td>0.41</td>
<td>1.35</td>
<td>0.41</td>
<td>0.28</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>0.66</td>
<td>1.43</td>
<td>0.65</td>
<td>0.59</td>
</tr>
</tbody>
</table>

| Combined total | | 0.88 | 1.70 | 0.87 | 0.88 |
INCLUSIVE ANALYSIS RESULTS SUMMARY

• With $B[\tau \rightarrow K\nu_\tau]$ for K pole contribution:

 ◦ HFAG $K\pi$ norm’n: $|V_{us}| = 0.2228(14)_{exp}(13)_{th}$

 ◦ ACLP $K\pi$ norm’n: $|V_{us}| = 0.2241(18)_{exp}(13)_{th}$

• With $\Gamma[K_{\mu 2}]$ for K pole contribution:

 ◦ HFAG $K\pi$ norm’n: $|V_{us}| = 0.2245(10)_{exp}(13)_{th}$

 ◦ ACLP $K\pi$ norm’n: $|V_{us}| = 0.2258(15)_{exp}(13)_{th}$
Comparison to results from other methods

With HFAG $K\pi$ normalization

$|V_{us}|$ (HFAG 2016 $K\pi$) c.f. other sources

- $K_{3\pi}$, PDG 2016
- $\Gamma[K_{\mu2}]$
- 3-family unitarity, HT14 $|V_{ud}|$
- τ FB FESR, HFAG17 (problematic conventional implementation)
- τ FB FESR, HLMZ17 (new implementation)
- τ, lattice $[N=3, C=0.3\text{ GeV}^2]$
- τ, lattice $[N=4, C=0.7\text{ GeV}^2]$
- τ, lattice $[N=5, C=0.9\text{ GeV}^2]$

This work (preliminary)
With alternate ACLP $K\pi$ normalization

$|V_{us}|$ (ACLP 2013 $K\pi$) c.f. other sources

- $K_{3\gamma}$, PDG 2016
- $\Gamma |K_{\mu2}|$
- 3-family unitarity, HT14 $|V_{ud}|$
- τ FB FESR, ACLP13 (problematic conventional implementation)
- τ FB FESR, HLMZ17 (new implementation)
- τ, lattice [N=3, C=0.3 GeV2]
- τ, lattice [N=4, C=0.7 GeV2]
- τ, lattice [N=5, C=0.9 GeV2]

This week (preliminary)
Comments/Prospects

• Lattice analysis confirms larger $|V_{us}|$ from τ decay data
 [as per alternate HMLZ FB FESR implementation]

• Significant error reduction from lattice approach c.f.
 FB FESR determination employing same data

• Theory uncertainty under better control for lattice than
 for OPE

• Improved suppression of high-s, higher-error spectral
 contributions in lattice approach without blowing up
 theory errors
• Lattice thus superior to FB FESR approach and should replace it going forward

• Trend to $|V_{us}|$ fall-off for $N = 3$, larger C compatible with missing high-s, higher-multiplicity spectral strength (larger impact on FB FESR than lattice results)

• Theory (lattice) errors straightforwardly reducible through improved statistics

• Significant experimental error reduction from improved $K, K\pi\tau$ BFs even without unit-normalized distribution improvements (e.g., Belle II)
SUMMARY

- Old 3σ low inclusive FB τ FESR $|V_{us}|$ problem resolved
 - Conventional FB FESR implementation using only inclusive BFs no longer tenable
 - Alternate, no-assumptions implementation: $|V_{us}|$ higher by ~ 0.0020, compatible with other determinations
 - Near-term improvements via u_s exclusive BFs
 - Highly favorable theoretical error situation
 - However, competitive $|V_{us}|$ needs improvements to old ALEPH higher-multiplicity, low-statistics data
Advantage of new lattice-inclusive $us V + A \tau$ approach

- **Theory:**
 * Lattice in place of OPE; no $us J = 0$ subtraction; improvement through increased statistics
 * *Parasitic on lattice a_μ effort* (a major effort in the lattice community)

- **Spectral integrals:**
 * Theory errors still small for weights strongly suppressing higher multiplicity contributions
 * Strong K, $K\pi$ dominance of spectral integral
 * Significant experimental improvements possible through just improved $K\pi$ BFs, distributions
• FB FESR w-, s_0-stability tests

○ Left panel: conventional implementation $w_T(y)$, $\hat{w}(y) = (1 - y)^3$ results (re $D = 6, 8$ assumptions)

○ Right panel: conventional (solid) c.f. new (dashed) implementation results, $w_N(y)$ FESRs
Finite t behavior

- Current-current two-point function

$$C^{\mu\nu}_{V/A}(t) = \sum_{\vec{x}} \langle J^{\nu}_{V/A}(\vec{x}, t)(J^{\mu}_{V/A}(0, 0))^\dagger \rangle$$

- $J = 0$, 1 components:
 $$C^{(1)}_{V/A}(t) = \frac{1}{3} \sum_{k=x,y,z} C^{kk}_{V/A}(t),$$
 $$C^{(0)}_{V/A}(t) = C^{tt}_{V/A}(t)$$

- $Q^2 = 0$-subtracted $J = 0$, 1 polarizations

$$\Pi^{(J)}_{V/A}(Q^2) - \Pi^{(J)}_{V/A}(0) = \sum_{t} K(Q, t) C^{(J)}_{V/A}(t)$$

$$K(Q, t) = \frac{\cos \hat{Q}t - 1}{\hat{Q}^2} + \frac{1}{2} t^2$$
Resulting $J = 0, 1, V, A$ contributions to \tilde{F}_{w_N}

$$\tilde{F}^{(J)}_{V/A;w_N} = \lim_{t \to \infty} L^{(J)}_{V/A;w_N}(t)$$

where

$$L^{(J)}_{V/A;\omega_N}(t) = \sum_{l=-t}^{t} w^{(J)}_{N}(l) C^{(J)}_{V/A}(l)$$

with

$$w^{(1)}_{N} = \sum_{k=1}^{N} K \left(\sqrt{Q_k^2}, t \right) \left(1 - \frac{2Q_k^2}{m_T^2} \right) \text{Res} \left[w_N(s) \right]_{s=-Q_k^2}$$

$$w^{(0)}_{N} = \sum_{k=1}^{N} K \left(\sqrt{Q_k^2}, t \right) \text{Res} \left[w_N(s) \right]_{s=-Q_k^2}$$
Large t convergence behavior

48$^3 \times 96$ lattice data, N=4, C=0.5 [GeV2]