Landau mode quark operators for the nucleon in a magnetic field

Waseem Kamleh

Collaborators
Ryan Bignell, Derek Leinweber, Matthias Burkardt

QCD Down Under
Cairns, Australia, July 10-14, 2017
Energy Shift in a Magnetic Field

- For small magnetic fields, the shift in energy for a baryon is

\[E(B) = M + \vec{\mu} \cdot \vec{B} + \frac{|q B|}{2M} - \frac{4\pi}{2} \beta B^2 + \mathcal{O}(B^3) \]
Energy Shift in a Magnetic Field

\[E(B) = M + \vec{\mu} \cdot \vec{B} + \frac{|q B|}{2 M} - \frac{4 \pi}{2} \beta B^2 + O(B^3) \]

- Magnetic moment \(\mu \) and magnetic polarisability \(\beta \),

T. Primer, WK, D. Leinweber, M. Burkardt, *Phys.Rev. D89 (2014) no.3, 034508*
Energy Shift in a Magnetic Field

\[E(B) = M + \vec{\mu} \cdot \vec{B} + \frac{|qB|}{2M} - \frac{4\pi}{2} \beta B^2 + \mathcal{O}(B^3) \]

- Magnetic moment \(\mu \) and magnetic polarisability \(\beta \),

T. Primer, WK, D. Leinweber, M. Burkardt, *Phys.Rev. D89 (2014) no.3, 034508*
Energy Shift in a Magnetic Field

\[E(B) = M + \vec{\mu} \cdot \vec{B} + \frac{|q B|}{2M} - \frac{4\pi}{2} \beta B^2 + \mathcal{O}(B^3) \]

- Magnetic moment \(\mu \) and magnetic polarisability \(\beta \),

T. Primer, WK, D. Leinweber, M. Burkardt, Phys.Rev. D89 (2014) no.3, 034508
Dirac Particle in a Magnetic Field

- The Dirac operator coupled to electromagnetism is given by

\[
\mathcal{D} = \gamma^\mu (\partial_\mu + iqA_\mu)
\]
The Dirac operator coupled to electromagnetism is given by

$$\slashed{D} = \gamma^\mu (\partial_\mu + iqA_\mu)$$

Yields a second order equation

$$(D^2 + \frac{1}{2} q \sigma^{\mu\nu} F_{\mu\nu} + m^2) \psi = 0$$
• The Dirac operator coupled to electromagnetism is given by

$$\mathcal{D} = \gamma^\mu (\partial_\mu + iqA_\mu)$$

• Yields a second order equation

$$(D^2 + \frac{1}{2} q \sigma^{\mu \nu} F_{\mu \nu} + m^2) \psi = 0$$

• For a constant background magnetic field $\vec{B} = \nabla \times \vec{A}$,

$$\left(D^2 + q \begin{bmatrix} \vec{\sigma} \cdot \vec{B} & 0 \\ 0 & \vec{\sigma} \cdot \vec{B} \end{bmatrix} + m^2 \right) \psi = 0$$
• Choose $\vec{B} = B\hat{z}$ in the z direction, spin factor $\alpha = \pm 1$,

$$(D^2 + \alpha qB + m^2) \psi_j = 0.$$
Dirac Particle in a Magnetic Field

• Choose $\vec{B} = B\hat{z}$ in the z direction, spin factor $\alpha = \pm 1$,

\[
(D^2 + \alpha qB + m^2) \psi_j = 0.
\]

• Non-relativistic limit $\psi \sim e^{-imt} \rightarrow$ Schrödinger-like equation,

\[
H\psi = E\psi, \quad H = \frac{1}{2m} \vec{\Pi}^2 = \frac{1}{2m}(\vec{p} - q\vec{A})^2.
\]
Dirac Particle in a Magnetic Field

• Choose $\vec{B} = B\hat{z}$ in the z direction, spin factor $\alpha = \pm 1$,

$$\left(D^2 + \alpha qB + m^2\right)\psi_j = 0.$$

• Non-relativistic limit $\psi \sim e^{-imt} \rightarrow$ Schrödinger-like equation,

$$H\psi = E\psi, \quad H = \frac{1}{2m}\vec{\pi}^2 = \frac{1}{2m}(\vec{p} - q\vec{A})^2.$$

• Spin components related by a linear shift.
Dirac Particle in a Magnetic Field

- Choose $\vec{B} = B\hat{z}$ in the z direction, spin factor $\alpha = \pm 1$,

$$ (D^2 + \alpha qB + m^2) \psi_j = 0. $$

- Non-relativistic limit $\psi \sim e^{-imt} \rightarrow$ Schrödinger-like equation,

$$ H\psi = E\psi, \quad H = \frac{1}{2m} \vec{\Pi}^2 = \frac{1}{2m}(\vec{p} - q\vec{A})^2. $$

- Spin components related by a linear shift.

\Rightarrow Eigenfunctions do not depend on spin factor.
Dirac Particle in a Magnetic Field

• Choose \(\vec{B} = B\hat{z} \) in the z direction, spin factor \(\alpha = \pm 1 \),

\[
(D^2 + \alpha qB + m^2) \psi_j = 0.
\]

• Non-relativistic limit \(\psi \sim e^{-imt} \to \) Schrödinger-like equation,

\[
H\psi = E\psi, \quad H = \frac{1}{2m} \vec{\Pi}^2 = \frac{1}{2m}(\vec{p} - q\vec{A})^2.
\]

• Spin components related by a linear shift.
 \(\Rightarrow \) Eigenfunctions do not depend on spin factor.

• Kinetic momenta have a constant commutator,

\[
[\Pi_x, \Pi_y] = [p_x - qA_x, p_y - qA_y] = iqB.
\]
• Define creation and annihilation operators

\[a = \sqrt{\frac{1}{2qB}}(\Pi_x + i\Pi_y), \quad a^\dagger = \sqrt{\frac{1}{2qB}}(\Pi_x - i\Pi_y) \]

such that \([a, a^\dagger] = 1\).
Landau Levels

- Define creation and annihilation operators

\[a = \sqrt{\frac{1}{2qB}} (\Pi_x + i\Pi_y), \quad a^\dagger = \sqrt{\frac{1}{2qB}} (\Pi_x - i\Pi_y) \]

such that \([a, a^\dagger] = 1\).

- Energy spectrum is equivalent to a harmonic oscillator,

\[H = \hbar \omega (a^\dagger a + \frac{1}{2}), \quad E = \hbar \omega (n + \frac{1}{2}), \]

where \(\omega = |qB|/m\) is the classical cyclotron frequency.

- Tower of Landau levels

\[E = \frac{1}{2} \hbar \omega, \quad \frac{3}{2} \hbar \omega, \quad \frac{5}{2} \hbar \omega, \ldots \]

- Each (continuum) Landau level is infinitely degenerate.
Landau Levels

- Define creation and annihilation operators

\[a = \sqrt{\frac{1}{2qB}}(\Pi_x + i\Pi_y), \quad a^\dagger = \sqrt{\frac{1}{2qB}}(\Pi_x - i\Pi_y) \]

such that \([a, a^\dagger] = 1\).

- Energy spectrum is equivalent to a harmonic oscillator,

\[H = \hbar \omega (a^\dagger a + \frac{1}{2}), \quad E = \hbar \omega (n + \frac{1}{2}), \]

where \(\omega = |qB|/m\) is the classical cyclotron frequency.

- Tower of Landau levels \(E = \frac{1}{2}\hbar \omega, \frac{3}{2}\hbar \omega, \frac{5}{2}\hbar \omega, \ldots\)
Landau Levels

• Define creation and annihilation operators

\[a = \sqrt{\frac{1}{2qB}} (\Pi_x + i\Pi_y), \quad a^\dagger = \sqrt{\frac{1}{2qB}} (\Pi_x - i\Pi_y) \]

such that \([a, a^\dagger] = 1\).

• Energy spectrum is equivalent to a harmonic oscillator,

\[H = \hbar \omega (a^\dagger a + \frac{1}{2}), \quad E = \hbar \omega (n + \frac{1}{2}), \]

where \(\omega = |qB|/m\) is the classical cyclotron frequency.

• Tower of Landau levels \(E = \frac{1}{2} \hbar \omega, \frac{3}{2} \hbar \omega, \frac{5}{2} \hbar \omega, \ldots\)

• Each (continuum) Landau level is infinitely degenerate.
Hadronic Landau Levels

• Canonical momenta p_x, p_y do not commute with H.

• Consider the momentum-projected two-point correlator,

$$G(t, \vec{p}) = \sum \vec{x} e^{-i\vec{p} \cdot \vec{x}} \langle \Omega | T\{\chi(t, \vec{x}) \bar{\chi}(0)\} | \Omega \rangle.$$

• A charged hadron (such as the proton) in a magnetic field is not an eigenstate of p_x, p_y.

• Instead, can project onto the lowest Landau level,

$$G(t, \vec{B}, p_z) = \sum \vec{x} \Psi_{\vec{B}}(x, y) e^{-ip_z z} \langle \Omega | T\{\chi(t, \vec{x}) \bar{\chi}(0)\} | \Omega \rangle.$$

• Lowest (continuum) Landau level $\Psi_{\vec{B}}(x, y) \sim e^{-|qB|(x^2 + y^2)/4}$.
Hadronic Landau Levels

• Canonical momenta p_x, p_y do not commute with H.

• Consider the momentum-projected two-point correlator,

\[G(t, \bar{p}) = \sum_{\vec{x}} e^{-i\bar{p} \cdot \vec{x}} \langle \Omega | T \{ \chi(t, \vec{x}) \bar{\chi}(0) \} | \Omega \rangle. \]
Hadronic Landau Levels

- Canonical momenta p_x, p_y do not commute with H.
- Consider the momentum-projected two-point correlator,
 \[G(t, \vec{p}) = \sum \overline{\chi}(0) \langle \Omega | T\{\chi(t, \vec{x}) \overline{\chi}(0)\} | \Omega \rangle. \]
- A charged hadron (such as the proton) in a magnetic field is not an eigenstate of p_x, p_y.
Hadronic Landau Levels

• Canonical momenta p_x, p_y do not commute with H.
• Consider the momentum-projected two-point correlator,

$$G(t, \vec{p}) = \sum_{\vec{x}} e^{-i\vec{p} \cdot \vec{x}} \langle \Omega | T \{ \chi(t, \vec{x}) \bar{\chi}(0) \} | \Omega \rangle.$$

• A charged hadron (such as the proton) in a magnetic field is not an eigenstate of p_x, p_y.
• Instead, can project onto the lowest Landau level,

$$G(t, \vec{B}, p_z) = \sum_{\vec{x}} \psi_{\vec{B}}(x, y) e^{-i p_z z} \langle \Omega | T \{ \chi(t, \vec{x}) \bar{\chi}(0) \} | \Omega \rangle.$$
Hadronic Landau Levels

- Canonical momenta p_x, p_y do not commute with H.
- Consider the momentum-projected two-point correlator,
 \[G(t, \vec{p}) = \sum_{\vec{x}} e^{-i\vec{p} \cdot \vec{x}} \langle \Omega | T\{\chi(t, \vec{x}) \bar{\chi}(0)\} | \Omega \rangle. \]
- A charged hadron (such as the proton) in a magnetic field is not an eigenstate of p_x, p_y.
- Instead, can project onto the lowest Landau level,
 \[G(t, \vec{B}, p_z) = \sum_{\vec{x}} \psi_{\vec{B}}(x, y) e^{-ip_zz} \langle \Omega | T\{\chi(t, \vec{x}) \bar{\chi}(0)\} | \Omega \rangle. \]
- Lowest (continuum) Landau level $\psi_{\vec{B}}(x, y) \sim e^{-|qB|(x^2+y^2)/4}$
Lattice Landau Levels

- Uniform magnetic field (in the z direction) on the lattice,

\[U_1(x, y) = \exp(-iBy), \]
\[U_2(x, y) = \begin{cases}
1, & y < n_y - 1, \\
\exp(+iBn_yx), & y = n_y - 1.
\end{cases} \]
Lattice Landau Levels

- Uniform magnetic field (in the z direction) on the lattice,

\[
U_1(x, y) = \exp(-iBy),
\]

\[
U_2(x, y) = \begin{cases}
1, & y < n_y - 1, \\
\exp(+iBn_y x), & y = n_y - 1.
\end{cases}
\]
Lattice Landau Levels

- Uniform magnetic field (in the z direction) on the lattice,

\[U_1(x, y) = \exp(-iBy), \]
\[U_2(x, y) = \begin{cases}
1, & y < n_y - 1, \\
\exp(+iBn_yx), & y = n_y - 1.
\end{cases} \]
Lattice Landau Levels

- Uniform magnetic field (in the z direction) on the lattice,

\[
U_1(x, y) = \exp(-iBy),
\]

\[
U_2(x, y) = \begin{cases}
1, & y < n_y - 1, \\
\exp(+iBn_y x), & y = n_y - 1.
\end{cases}
\]
Lattice Landau Levels

- Periodic boundary conditions impose quantisation condition,
 \[qB a^2 = \frac{2\pi k}{n_x n_y} \].

- Degeneracy of lattice Landau modes is field-strength dependent.
- Lowest level has degeneracy equal to the flux quanta \(|k| \).
Lattice Landau Levels

- Periodic boundary conditions impose quantisation condition,
 \[qB a^2 = \frac{2\pi k}{n_x n_y}. \]

- Lattice Landau levels are eigenmodes of the 2D Laplacian,
 \[\Delta_{x,x'} = 4\delta_{x,x'} - \sum_{\mu=1,2} (U_{\mu}(\vec{x})\delta_{x+\hat{\mu},x'} + U_{\mu}^\dagger(\vec{x} - \hat{\mu})\delta_{x-\hat{\mu},x'}) \]
Lattice Landau Levels

- Periodic boundary conditions impose quantisation condition,

\[qBA^2 = \frac{2\pi k}{nx ny}. \]

- Lattice Landau levels are eigenmodes of the 2D Laplacian,

\[\Delta\vec{x},\vec{x}' = 4\delta\vec{x},\vec{x}' - \sum_{\mu=1,2} (U_{\mu}(\vec{x})\delta_{\vec{x}+\hat{\mu},\vec{x}'} + U_{\mu}^\dagger(\vec{x} - \hat{\mu})\delta_{\vec{x}-\hat{\mu},\vec{x}'}). \]

- Degeneracy of lattice Landau modes is field-strength dependent.
Lattice Landau Levels

• Periodic boundary conditions impose quantisation condition,

\[qBA^2 = \frac{2\pi k}{n_x n_y}. \]

• Lattice Landau levels are eigenmodes of the 2D Laplacian,

\[\Delta \bar{x}, \bar{x}' = 4\delta \bar{x}, \bar{x}' - \sum_{\mu=1,2} (U_{\mu}(\bar{x})\delta \bar{x} + \hat{\mu}, \bar{x}' + U_{\mu}^\dagger(\bar{x} - \hat{\mu})\delta \bar{x} - \hat{\mu}, \bar{x}'). \]

• Degeneracy of lattice Landau modes is field-strength dependent.

• Lowest level has degeneracy equal to the flux quanta \(|k|\).
Lattice Landau mode, $k = 1$
Lattice Landau modes, $k = 2$
• A hadron of (integer) charge q experiences a field strength 3 times that of the d quark.

• Neutron is charge-neutral, $q = 0$.

• Neutron does not have Landau levels.

• Neutron is a composite object!
Hadronic Landau Levels

- A hadron of (integer) charge q experiences a field strength 3 times that of the d quark.
- Project onto the space spanned by the modes associated with the lowest lattice Landau level,

$$G(t, k_d, p_z) = \sum_{\vec{x}} \sum_{j=1}^{\frac{3qk_d}{|3qk_d|}} \psi_{j, \vec{B}}(x, y) e^{-ip_z^z} \langle \Omega | T \{ \chi(x) \bar{\chi}(0) \} | \Omega \rangle.$$
Hadronic Landau Levels

• A hadron of (integer) charge q experiences a field strength 3 times that of the d quark.

• Project onto the space spanned by the modes associated with the lowest lattice Landau level,

$$G(t, k_d, p_z) = \sum_{\vec{x}} \sum_{j=1}^{3|qk_d|} \psi_{j,\vec{B}}(x, y) e^{-ip_zz} \langle \Omega | T \{ \chi(x) \bar{\chi}(0) \} | \Omega \rangle.$$

• Neutron is charge-neutral, $q = 0$.
Hadronic Landau Levels

- A hadron of (integer) charge q experiences a field strength 3 times that of the d quark.
- Project onto the space spanned by the modes associated with the lowest lattice Landau level,
 \[G(t, k_d, p_z) = \sum_{\vec{x}} \sum_{j=1}^{3qk_d} \psi_{j, \bar{B}}(x, y) e^{-ip_zz} \langle \Omega | T \{ \chi(x) \bar{\chi}(0) \} | \Omega \rangle. \]
- Neutron is charge-neutral, $q = 0$.
 - Neutron does not have Landau levels.
A hadron of (integer) charge q experiences a field strength 3 times that of the d quark.

Project onto the space spanned by the modes associated with the lowest lattice Landau level,

$$G(t, k_d, p_z) = \sum_{\vec{x}} \sum_{j=1}^{3qk_d} \psi_{j, \vec{B}}(x, y) e^{-ip_zz} \langle \Omega | T \{ \chi(x) \bar{\chi}(0) \} | \Omega \rangle.$$

Neutron is charge-neutral, $q = 0$.

- Neutron does not have Landau levels.

Neutron is a composite object!
Quark Landau Levels

- In the absence of QCD, quarks have individual Landau levels.
Quark Landau Levels

- In the absence of QCD, quarks have individual Landau levels.
 - At small field strengths, Landau levels are closely spaced.
Quark Landau Levels

- In the absence of QCD, quarks have individual Landau levels.
 - At small field strengths, Landau levels are closely spaced.
 - Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.
Quark Landau Levels

- In the absence of QCD, quarks have individual Landau levels.
 - At small field strengths, Landau levels are closely spaced.
 - Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.
- To what extent do Landau mode effects remain in the presence of QCD?
Quark Landau Levels

• In the absence of QCD, quarks have individual Landau levels.
 • At small field strengths, Landau levels are closely spaced.
 • Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.

• To what extent do Landau mode effects remain in the presence of QCD?

• Define projection operator onto lowest n eigenmodes

$$P_n = \sum_{i=1}^{n} |\Psi_{i,\vec{B}}\rangle \langle \Psi_{i,\vec{B}}|$$
Landau mode projection (QED-only)

- Standard quark operator uses Gaussian spatial smearing.

- Gaussian-smeared quark source, tuned for $B = 0$ nucleon.

- Landau-projected quark sink.

- Sink projection is applied to quark propagator,
 \[S'(x, y) = \sum_z P_n(x, z) S(z, y) \]

- $n = |q^f k d|$ modes for lowest Landau level.

- Fix to Landau gauge for QED-only eigenmodes.
Landau mode projection (QED-only)

- Standard quark operator uses Gaussian spatial smearing.
- Try to capture balance between competing QED and QCD effects.
Landau mode projection (QED-only)

- Standard quark operator uses Gaussian spatial smearing.
- Try to capture balance between competing QED and QCD effects.
 - Gaussian-smeared quark source, tuned for \(B = 0 \) nucleon.
Landau mode projection (QED-only)

- Standard quark operator uses Gaussian spatial smearing.
- Try to capture balance between competing QED and QCD effects.
 - Gaussian-smeared quark source, tuned for $B = 0$ nucleon.
 - Landau-projected quark sink.
Landau mode projection (QED-only)

- Standard quark operator uses Gaussian spatial smearing.
- Try to capture balance between competing QED and QCD effects.
 - Gaussian-smeared quark source, tuned for $B = 0$ nucleon.
 - Landau-projected quark sink.
- Sink projection is applied to quark propagator,
 \[
 S'(x, y) = \sum_z P_n(x, z) S(z, y)
 \]
Landau mode projection (QED-only)

- Standard quark operator uses Gaussian spatial smearing.
- Try to capture balance between competing QED and QCD effects.
 - Gaussian-smeared quark source, tuned for \(B = 0 \) nucleon.
 - Landau-projected quark sink.
- Sink projection is applied to quark propagator,

 \[
 S'(x, y) = \sum_z P_n(x, z) S(z, y)
 \]

- \(n = |3 q_f k_d| \) modes for lowest Landau level.
Landau mode projection (QED-only)

- Standard quark operator uses Gaussian spatial smearing.
- Try to capture balance between competing QED and QCD effects.
 - Gaussian-smeared quark source, tuned for $B = 0$ nucleon.
 - Landau-projected quark sink.
- Sink projection is applied to quark propagator,
 \[S'(x, y) = \sum_z P_n(x, z) S(z, y) \]
- $n = |3 q_f k_d|$ modes for lowest Landau level.
- Fix to Landau gauge for QED-only eigenmodes.
Neutron energy shifts (QED-only projection)

\[\delta E(B) = -\frac{4\pi}{2} \beta B^2 + \mathcal{O}(B^4) \]
Laplacian mode projection (QED+QCD)

- Hadron correlation function is gauge invariant.

\[\sum_{i} |\Psi_i\rangle \langle \Psi_i| \]

This has a similar effect to performing (2D) smearing.

i.e. filtering out high frequency modes.
Laplacian mode projection (QED+QCD)

• Hadron correlation function is gauge invariant.
 • Gauge fixing can only affect overlap with ground state.
Laplacian mode projection (QED+QCD)

- Hadron correlation function is gauge invariant.
 - Gauge fixing can only affect overlap with ground state.
- Add QCD gauge fields to the 2D Laplacian.
Laplacian mode projection (QED+QCD)

- Hadron correlation function is gauge invariant.
 - Gauge fixing can only affect overlap with ground state.
- Add QCD gauge fields to the 2D Laplacian.
 - Eigenmodes are QCD covariant (no need to gauge fix!)
Laplacian mode projection (QED+QCD)

- Hadron correlation function is gauge invariant.
 - Gauge fixing can only affect overlap with ground state.
- Add QCD gauge fields to the 2D Laplacian.
 - Eigenmodes are QCD covariant (no need to gauge fix!)
- Projector P_n is then a truncation of the completeness relation,

$$1 = \sum_i |\psi_i\rangle\langle\psi_i|$$
Laplacian mode projection (QED+QCD)

- Hadron correlation function is gauge invariant.
 - Gauge fixing can only affect overlap with ground state.
- Add QCD gauge fields to the 2D Laplacian.
 - Eigenmodes are QCD covariant (no need to gauge fix!)
- Projector P_n is then a truncation of the completeness relation,

$$1 = \sum_i |\psi_i\rangle\langle\psi_i|$$

- This has a similar effect to performing (2D) smearing.
Laplacian mode projection (QED + QCD)

• Hadron correlation function is gauge invariant.
 • Gauge fixing can only affect overlap with ground state.
• Add QCD gauge fields to the 2D Laplacian.
 • Eigenmodes are QCD covariant (no need to gauge fix!)
• Projector P_n is then a truncation of the completeness relation,

$$1 = \sum_i |\psi_i\rangle\langle\psi_i|$$

• This has a similar effect to performing (2D) smearing.
 • i.e. filtering out high frequency modes.
Laplacian mode projection (QED+QCD)

- QCD mixes modes between the different Landau levels.
Laplacian mode projection (QED+QCD)

- QCD mixes modes between the different Landau levels.
 - Can no longer identify lowest Landau level modes.
Laplacian mode projection (QED+QCD)

- QCD mixes modes between the different Landau levels.
 - Can no longer identify lowest Landau level modes.
- Choose $n > qk$ modes to project.
Laplacian mode projection (QED+QCD)

- QCD mixes modes between the different Landau levels.
 - Can no longer identify lowest Landau level modes.
- Choose $n > qk$ modes to project.
- Laplacian projector is well defined at $B = 0$.

\[
\left(G_{\downarrow}(B, t) + G_{\uparrow}(B, t) \right) \\
\left(G_{\downarrow}(0, t) + G_{\uparrow}(0, t) \right)
\]

\[
\times \\
\left(G_{\downarrow}(B, t) + G_{\uparrow}(B, t) \right) \\
\left(G_{\downarrow}(0, t) + G_{\uparrow}(0, t) \right)
\]
Laplacian mode projection (QED+QCD)

- QCD mixes modes between the different Landau levels.
 - Can no longer identify lowest Landau level modes.
- Choose \(n > qk \) modes to project.
- Laplacian projector is well defined at \(B = 0 \).
- Ratio of correlated fluctuations provides improved signal.
Laplacian mode projection (QED+QCD)

- QCD mixes modes between the different Landau levels.
 - Can no longer identify lowest Landau level modes.
- Choose $n > qk$ modes to project.
- Laplacian projector is well defined at $B = 0$.
- Ratio of correlated fluctuations provides improved signal.
- e.g. spin-averaged energy shift,

$$
\left(\frac{G_{\downarrow}(B+, t) + G_{\uparrow}(B-, t)}{G_{\downarrow}(0, t) + G_{\uparrow}(0, t)} \right) \times \left(\frac{G_{\downarrow}(B-, t) + G_{\uparrow}(B+, t)}{G_{\downarrow}(0, t) + G_{\uparrow}(0, t)} \right)
$$
Proton energy shifts (QED+QCD projection)

\[\delta E(B) = \frac{|q B|}{2M} - \frac{4\pi}{2} \beta B^2 + \mathcal{O}(B^4) \]
QED vs QCD

- Laplacian (QED/QED+QCD) eigenmode projectors work!

- Why?
 - Want small \vec{B} field strengths for perturbative energy expansion to be valid.
 - In confined phase of QCD.
 \Rightarrow Confined quarks cannot have individual Landau levels.
 - Nonetheless, effects of \vec{B} field on quark distribution in the nucleon appear to be significant.
 - The addition of background magnetic field alters the physics.
 - 3D spatial symmetry is broken by the \vec{B} field!
 - Competing QED and QCD interactions.
 - Dynamical fermions, but electro-quenched.
 - Magnetic field + topology = chiral magnetic effect?
QED vs QCD

- Laplacian (QED/QED+QCD) eigenmode projectors work!
- Why?

- In confined phase of QCD.
 ⇒ Confined quarks cannot have individual Landau levels.
- Nonetheless, effects of \vec{B} field on quark distribution in the nucleon appear to be significant.
- The addition of background magnetic field alters the physics.
- 3D spatial symmetry is broken by the \vec{B} field!
- Competing QED and QCD interactions.
- Dynamical fermions, but electro-quenched.
- Magnetic field + topology = chiral magnetic effect?
QED vs QCD

- Laplacian (QED/QED+QCD) eigenmode projectors work!
 - Why?
- Want small \vec{B} field strengths for perturbative energy expansion to be valid.
QED vs QCD

• Laplacian (QED/QED+QCD) eigenmode projectors work!
 • Why?
• Want small \vec{B} field strengths for perturbative energy expansion to be valid.
 • In confined phase of QCD.
QED vs QCD

- Laplacian (QED/QED+QCD) eigenmode projectors work!
 - Why?
- Want small \vec{B} field strengths for perturbative energy expansion to be valid.
 - In confined phase of QCD.
 \[\Rightarrow \] Confined quarks cannot have individual Landau levels.

- Magnetic field + topology = chiral magnetic effect?
QED vs QCD

• Laplacian (QED/QED+QCD) eigenmode projectors work!
 • Why?

• Want small \vec{B} field strengths for perturbative energy expansion to be valid.
 • In confined phase of QCD.
 ⇒ Confined quarks cannot have individual Landau levels.

• Nonetheless, effects of \vec{B} field on quark distribution in the nucleon appear to be significant.
QED vs QCD

- Laplacian (QED/QED+QCD) eigenmode projectors work!
 - Why?
- Want small \vec{B} field strengths for perturbative energy expansion to be valid.
 - In confined phase of QCD.
 ⇒ Confined quarks cannot have individual Landau levels.
- Nonetheless, effects of \vec{B} field on quark distribution in the nucleon appear to be significant.
- The addition of background magnetic field alters the physics.
QED vs QCD

- Laplacian (QED/QED+QCD) eigenmode projectors work!
 - Why?

- Want small \vec{B} field strengths for perturbative energy expansion to be valid.
 - In confined phase of QCD.
 \Rightarrow Confined quarks cannot have individual Landau levels.

- Nonetheless, effects of \vec{B} field on quark distribution in the nucleon appear to be significant.

- The addition of background magnetic field alters the physics.
 - 3D spatial symmetry is broken by the \vec{B} field!
QED vs QCD

- Laplacian (QED/QED+QCD) eigenmode projectors work!
 - Why?

- Want small \vec{B} field strengths for perturbative energy expansion to be valid.
 - In confined phase of QCD.
 \Rightarrow Confined quarks cannot have individual Landau levels.

- Nonetheless, effects of \vec{B} field on quark distribution in the nucleon appear to be significant.

- The addition of background magnetic field alters the physics.
 - 3D spatial symmetry is broken by the \vec{B} field!
 - Competing QED and QCD interactions.
QED vs QCD

- Laplacian (QED/QED+QCD) eigenmode projectors work!
 - Why?
- Want small \vec{B} field strengths for perturbative energy expansion to be valid.
 - In confined phase of QCD.
 \Rightarrow Confined quarks cannot have individual Landau levels.
- Nonetheless, effects of \vec{B} field on quark distribution in the nucleon appear to be significant.
- The addition of background magnetic field alters the physics.
 - 3D spatial symmetry is broken by the \vec{B} field!
 - Competing QED and QCD interactions.
 - Dynamical fermions, but electro-quenched.
QED vs QCD

• Laplacian (QED/QED+QCD) eigenmode projectors work!
 • Why?

• Want small \vec{B} field strengths for perturbative energy expansion to be valid.
 • In confined phase of QCD.
 \Rightarrow Confined quarks cannot have individual Landau levels.

• Nonetheless, effects of \vec{B} field on quark distribution in the nucleon appear to be significant.

• The addition of background magnetic field alters the physics.
 • 3D spatial symmetry is broken by the \vec{B} field!
 • Competing QED and QCD interactions.
 • Dynamical fermions, but electro-quenched.
 • Magnetic field + topology = chiral magnetic effect?
Summary

- Defined three different lattice Landau mode projectors:
 - Hadronic correlator Landau mode projection.
 - Quark propagator QED Landau mode projection.
 - Quark propagator QED+QCD Laplacian mode projection.
- Quark level sink projection plus Gaussian-smeared source:
 - Enables formation of plateaus in energy shift ratios.
 - Captures important physics that standard operators don’t.
- Cannot rely on Euclidean time evolution alone for baryonic physics.
- For the first time, we can provide precision determinations of magnetic polarisabilities!
- See next talk by Ryan Bignell.
Summary

- Defined three different lattice Landau mode projectors:
 - Hadronic correlator Landau mode projection.
 - Quark propagator QED Landau mode projection.
 - Quark propagator QED+QCD Laplacian mode projection.

- Quark level sink projection plus Gaussian-smeared source:
 - Enables formation of plateaus in energy shift ratios.
 - Captures important physics that standard operators don’t.

- Cannot rely on Euclidean time evolution alone for baryonic physics.

- For the first time, we can provide precision determinations of magnetic polarisabilities!

- See next talk by Ryan Bignell.
Summary

- Defined three different lattice Landau mode projectors:
 - Hadronic correlator Landau mode projection.
 - Quark propagator QED Landau mode projection.
 - Quark level sink projection plus Gaussian-smeared source:
 - Enables formation of plateaus in energy shift ratios.
 - Captures important physics that standard operators don’t.
- Cannot rely on Euclidean time evolution alone for baryonic physics.
- For the first time, we can provide precision determinations of magnetic polarisabilities!
- See next talk by Ryan Bignell.
Summary

- Defined three different lattice Landau mode projectors:
 - Hadronic correlator Landau mode projection.
 - Quark propagator QED Landau mode projection.
 - Quark propagator QED+QCD Laplacian mode projection.

- Enables formation of plateaus in energy shift ratios.
- Captures important physics that standard operators don't.
- Cannot rely on Euclidean time evolution alone for baryonic physics.

- For the first time, we can provide precision determinations of magnetic polarisabilities!

- See next talk by Ryan Bignell.
Summary

- Defined three different lattice Landau mode projectors:
 - Hadronic correlator Landau mode projection.
 - Quark propagator QED Landau mode projection.
 - Quark propagator QED+QCD Laplacian mode projection.
- Quark level sink projection plus Gaussian-smeared source:
 - Enables formation of plateaus in energy shift ratios.
 - Captures important physics that standard operators don’t.
 - Cannot rely on Euclidean time evolution alone for baryonic physics.
 - For the first time, we can provide precision determinations of magnetic polarisabilities!

- See next talk by Ryan Bignell.
Summary

- Defined three different lattice Landau mode projectors:
 - Hadronic correlator Landau mode projection.
 - Quark propagator QED Landau mode projection.
 - Quark propagator QED+QCD Laplacian mode projection.
- Quark level sink projection plus Gaussian-smeared source:
 - Enables formation of plateaus in energy shift ratios.

See next talk by Ryan Bignell.
Summary

- Defined three different lattice Landau mode projectors:
 - Hadronic correlator Landau mode projection.
 - Quark propagator QED Landau mode projection.
 - Quark propagator QED+QCD Laplacian mode projection.
- Quark level sink projection plus Gaussian-smeared source:
 - Enables formation of plateaus in energy shift ratios.
 - Captures important physics that standard operators don’t.
Summary

- Defined three different lattice Landau mode projectors:
 - Hadronic correlator Landau mode projection.
 - Quark propagator QED Landau mode projection.
 - Quark propagator QED+QCD Laplacian mode projection.
- Quark level sink projection plus Gaussian-smeared source:
 - Enables formation of plateaus in energy shift ratios.
 - Captures important physics that standard operators don’t.
 - Cannot rely on Euclidean time evolution alone for baryonic physics.

See next talk by Ryan Bignell.
Summary

• Defined three different lattice Landau mode projectors:
 • Hadronic correlator Landau mode projection.
 • Quark propagator QED Landau mode projection.
 • Quark propagator QED+QCD Laplacian mode projection.

• Quark level sink projection plus Gaussian-smeared source:
 • Enables formation of plateaus in energy shift ratios.
 • Captures important physics that standard operators don’t.
 • Cannot rely on Euclidean time evolution alone for baryonic physics.

• For the first time, we can provide precision determinations of magnetic polarisabilities!
Summary

- Defined three different lattice Landau mode projectors:
 - Hadronic correlator Landau mode projection.
 - Quark propagator QED Landau mode projection.
 - Quark propagator QED+QCD Laplacian mode projection.
- Quark level sink projection plus Gaussian-smeared source:
 - Enables formation of plateaus in energy shift ratios.
 - Captures important physics that standard operators don’t.
 - Cannot rely on Euclidean time evolution alone for baryonic physics.
- For the first time, we can provide precision determinations of magnetic polarisabilities!
 - See next talk by Ryan Bignell.